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Abstract-The effect of couple stresses at a crack tip is investigated by considering two particular
problems. A formally exact solution is obtained (for couple-stress and micropolar elasticity) for the case of
a semi-infinite crack with a prescribed internal stress. Secondly, the problem of a finite crack in an infinite
medium (with couple stresses) under uniform tension at infinity, is solved by matched expansions when the
couple stress parameter is small compared with the crack length. In each case it is shown that the energy
release rate from a crack tip tends to the classical elastic value as the couple stress (or micropolar)
parameter tends to zero.

I. INTRODUCTION

The purpose of this paper is to clarify the effect of couple stresses on the stress concentration
at the tip of a crack. This was first considered by Muki and Sternberg[8] who treated the
problem of a finite length crack in an infinite medium under conditions of plane strain with a
uniform tension acting at infinity. Their method consisted of reducing the problem to three
Fredholm integral equations which were then solved numerically. The main conclusions were
that, at the crack tips, the stress and couple stress fields had singularities of the same order, the
order of the stress singularities being the same as those of the classical elastic problem.
Graphical results were presented for the variation with / (the couple stress parameter) of the
coefficients of the crack tip stress-singularities (stress intensity factors). It was found that the
limit of the stress intensity factor as I ....0 was different from that obtained with I = 0 for the
usual solution without couple stresses. Another interesting result was that the ratio of the crack
opening displacement at the centre for the medium with couple stresses to that obtained
without couple stresses, tended to l!(3-4v) as Ifa tended to infinity, a being the crack length
and p Poisson's ratio.

Our contention is that the energy release rate (the important physical quantity from our
point of view) does in fact tend to the classical elastic result when IJa ....0, even though the
stress intensity factor does not. In a previous note (1] the authors have demonstrated this for a
model problem of a semi-infinite crack in a strip, for both the couple stress and micropolar
elastic theories, difficulties in the analysis were circumvented by the use of a certain path
independent integral.

Consideration is given here to two problems. (i) A semi-infinite crack in an infinite medium
loaded by a specified internal stress, and (il) a finite length crack in an infinite medium loaded by
a uniform tension at infinity, this being the problem considered by Muki and Sternberg[8]. For
problem (i) a solution is obtained by the Wiener-Hopf technique. The problem is uncoupled by
solving successively a pair of Wiener-Hopf equations, and the results are valid for all values of
the couple-stress parameter I. For problem (il) a solution is obtained in the limit l/a ....Oby the
method of matched asymptotic expansions. As a check on the results obtained by matched
expansions, and as an independent proof that the energy release rate tends to the classical
elastic value as / ....0, we give an argument involving an integral that is path-independent in the
classical problem but is not in the couple-stress case, This integral, which is described in
Appendix 1, can also be used together with the zero order inner solution of the asymptotic
analysis to give the first order correction to the energy release rate.

The plan of the paper is as follows. In Section 2 we review the basic equations of
couple-stress and micropolar elasticity as applied to plane strain conditions. Section 3 ;ontains
the analysis for the semi-infinite crack problem, firstly for the couple-stress case in some detail
and then a brief description for the micropolar case. Numerical results are presented for the
variation of the energy release rate with the couple stress (or micropolar) parameter. In Section
4 the finite crack is considered for tbe couple-stress case when I (the couple stress parameter is
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sIr.all. (We omit a treatment of the micropolar problem whose analysis would probably be very
similar). Appendix 1 gives an alternative argument, using a certain integral, to show that the
energy release rate tends to the classical result as the couple-stress (or micropolar) parameter
tends to zero. Finally, Appendix 2 contains some of the details of the Wiener-Hopf factorisation
procedure.

2. BASIC EQUATIONS

2.1 Couple stress theory
Since the problems to be considered are concerned with a state of plane strain we begin with

the formulation given by Mindlin (1963) in terms of a generalisation of the Airy stress function.
For the full equations and the background constitutive theory the reader is referred to the
papers by Toupin[4] and Mindlin and Tiersten[7] or for the problem considered here to Muki
and Sternberg[8]. The stress and couple stress are written

with

Ta{J = f-yaEpfJq,,-yp + E-yal/J,{J-y }

eTa = l/J,a

EIZ = - EZJ = 1, Ell = E22 = 0,

(2.1)

where q, and l/J are arbitrary (sufficiently smooth) stress functions, a and ~ taking the values 1
and 2. The components Tail are the usual ones of the stress in the plane with cartesian
coordinates (XI> X2) and the first index (a) denotes the direction of the outward normal. The
couple stress eTa (a = 1,2) are abridged symbols for eTa 3, with all other stresses and couple
stresses equal to zero, from the plane strain ,:-onditions, apart from 733 and eTla which are given
as

(2.2)

Here ~, is Poisson's ratio, '1/' is an elastic constant arising in the couple stress theory, and w is
thc component of the rotation vector in the Xl direction perpendicular to the (XI> X2) plane. In
terms of the stress functions q, and l/J the displacements and the rotation are given as

(2.3)

where ,." is the shear modulus and I the characteristic- length parameter of the couple stress
theory. In (2.3) U(a.{Jl means !(ua.{J + u{J.a) and such a bracket in the subscripts will have a similar
interpretatior. whenever it is used. TI"~ stress fGr:cticns must satisfy the compatibility relations

(2.4)

and
(2.5)

The problem then is to find 4J and l/J and the corresponding stress and Jisplacement field from
the solution of eqns (2.5), and (2.4) and appropriate crack boundary conditions. In all the
problems to be considered there is symmetry about X2 = 0 so the problems can be reduced to
half-plane problems for X2;;' 0 with boundary conditions on X2 = 0 and suitable conditions on the
stresses at infinity. We apply a Fourier transform over XI to eqns (2.4) and (2.5) and find,
using the condition that ~ and ;[J tend to zero as X2 tends to infinity,

where

~ = (C + DX2) exp (-lslx2)

;[J = B exp (-lslx2) + A exp [- (S2 + !/f)1I2X2l (2.6)
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in order to satisfy the compatibility conditions. In these formulae the bar denotes the Fourier
transform, thus

(2.7)

(2.8)

Similarly the following results are obtained for the Fourier transforms of the stresses, couple
stresses and displacements

1'21 = iS~'2 - s2l;i; 1'12 = iS~'2 -l;i.n

1'22 =_S2~ - isl;i'2; iii = -isl;i; ii2= l;i,2

- 2ILiSiil = (1- II)~,n+ IIS2~ + isl;i'2

- 2- (1- II)i -
- 2ILiSii2 = (2 - II)iS4>'2 - S '" - -- 4>,7:12'

S

2.2 Mitropolar elasticity
The main difference between the micropolar and couple stress theories is that the former

theory gives extra degrees of freedom for local rotations, whereas in the couple stress theory
the rotations are constrained; so that in our plane strain problem, for example, the rotation (II of
eqn (2.3) is defined by 2(11 ="2.1 - "\,2' In the micropolar theory (see Eringen[2] for a fuller
account) the stress equations of equilibrium are satisfied by the same stress functions given in
(2.1). The couple stress (Ta would be called rna 3 in Eringen's notation. In place of the second
equation of (2.3), we have

(2.9)

where 4>3 is the component of the micro-rotation vector in the x3-direction and 'Y is a material
constant. Whereas in the couple stress theory the strains elj are defined as in classical elasticity,
in the micropolar theory we have as the only non-zero strains

el2 = "2.1 ~ 4>3 )

e21 = "1.2 + 4>3

ell = "I.t. e22 = "2,2

and the stress-strain relations

where A, IL and X are material constants.
Equations (2.5) are still valid but eqns (2.4) are replaced by

where

(2.10)

(2.11)

(2.12)

A
(2.13)

Finally the stress-equilibrium equations are

t,k./ = 0 }
(Tlk,1 + Ekmlltmll = 0

(2.14)

where for plane strain k =3 in (2.14)2 and I and k take the values 1 and 2 in (2.14)1' Equations
(2.1), (2.5) and (2.12) are the solutions of these equations plus compatibility conditions.
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Applying the Fourier transform to these equations gives, for the transformed stresses,
the same as the first five equations of (2.8) with 'Tij replaced by tij. The transformed displace
ments are somewhat different, however, becoming

(2f..t +X)isil l =(1- 111)(11- IIJ'22 1
. - - (f..t +J() - f..t -

(2f..t + J()ISU2 = (2f..t + J()f!J3 +~ t 12 - Xt21'

As in (2.6) we deduce for the Fourier transforms of f!J and r/J,

j, = (C1+ Dlx2) exp (-lslx2) }

~ = B I exp (-lslx2) +AI exp (- f3IX2)
where

in order to satisfy the compatibility conditions.

3, SEMI-INFINITE CRACK PROBLEMS

(2.15)

(2.16)

(2.17)

3. I Couple stress theory
As one of the simplest crack problems that is amenable to analytical treatment we consider

a s~mi:infinite crack on X2 =0, XI < 0, with an internal stress 'T22 =- 'To exp (xI'a) acting on the
crack faces. For the couple stress theory this problem reduces to a half-plane problem with the
following boundary conditions on X2 = 0:-

'Tn = - 'To eX1Ja
, (T2 = 0, when

X'<O)
'T21 = 0, all XI (3.t)

U2 =0, W2=0, when XI>O.

The corresponding conditions in the micropolar theory are given in Section 3.2. The Fourier
transforms, with respect to Xj, of the boundary conditions (3.t) can be written

Tn = - 'Toa(t + isa)-I + i,,+,. ~2 = u+}
1'21 = 0, il2= il_, w = w_

(3.2)

where 1'+ and u+ are the half-range transforms of 'Tn and (T2 for X2 = 0, XI> O. Thus, for
example,

(3.3)

Similarly i1- and w_ are half-range transforms of U2 and w for XI < 0, X2 = 0, thus

(3.4)

The subscripts + and - in these expressions denote functions which are regular in the
respective upper and lower half planes of the complex s-plane.

The transformed potentials j, and ~ have the forms (2.6) in terms of the four unknown
function A(s), B(s), C(s) and D(s), with

(3.5)

At X2 = 0, formulae (2.6) and (2.8) give the relations

(3.6)
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4p,t2liL=A+B

p,iL = (l - v)D
where

The boundary conditions (3.t) on 'TZI and '122 also show that

1107

(3.7)

(3.8)

(3.9)

and
D -lslC + is(B + A) = 0

Tn = -S2C + is(lslB +1M).

(3.10)

(3.1t)

Here and henceforth all transforms are evaluated at Xz = 0 unless explicitly stated other
wise, thus if+ means 0'+(s, 0) for example.

Using the relations (3.5H3.11) the unknown functions A, B, C and D can be eliminated, and
the problem reduced to equations which involve only unknown "plus" and "minus" functions,
to be calculated by the Wiener-Hopf technique. For example, the following pair of relations
can be deduced for C:

and
- ilslC = 4p,/2sw_- ip,(I- "rliL 1
S2C = - isO'+ + '1oa(l + isaf' - f+.

(3.12)

On eliminating C between these equations we get

(3.13)

which can now be solved by a standard Wiener-Hopf procedure.
Firstly we require the factorisation of lsI as a product of "plus" and "minus" functions of a

complex variable s, and this is achieved by writing

(3.14)

where s-l/2 has a branch cut from 0 to + ioo, and s+ 112 has a branch cut from 0 to - ioo, both
square root functions being positive when s is real and positive. It is convenient to regard s+ liZ

and s-'/2 as the limit, E-+ +0, of the respective functions (s + iE)I/2 and (s - iE)"2 which have
branch cuts from:;. iE to :;. ioo. Evidently (3.13) can be re-written as

J(s) = - s+-lIz(f+ + isO'+) + '1oa(l + isar1(s+ -liZ (i/a)+ -112) 1
= .L IIZ(4p,IZisw_ + p,(1 - "ri,L) - (l + isor IWa)+ -1/2'100.

(3.15)

The first expression is regular in the upper half-plane and the second is regular in the lower
half-plane, so that J(s) defines a function regular in the whole plane by analytic continuation. It
can be shown that J is bounded at infinity, hence by Liouville's theorem it is equal to a constant
K which has yet to be determined. Equation (3.15) then gives the combinations f+ + isO'+ and
4p,Pisw_ + p,(I- ,,)-IU_ in terms of K and TO. These expressions can then be used in (3.12) to
determine C as

(3.16)

Knowing the function C, eqns (2.6), (3.2) and (3.5H3.ll) can now be used to deduce a
secondary Wiener-Hopf equation. For on eliminating all unknowns except u+ and u_ we are led
to the formula



1108

where

C. ATKINSON and F. G. LEPPINGTON

and
al = all. 51 = Is.

0.18)

0.19)

The expression fJo has branch cuts from i to ioo and from - i to - ioo. In order to solve (3.17).
the important first step is the factorisation of fJok into the product of "plus" and "minus"
functions. For fJo this is done by inspection, and the factorisation for k == k+k- is described in
Appendix 2, using Cauchy's theorem. With this factorisation, (3.17) is arranged as

with

is iT" IJ k S-1/2/1/2 { 'T a3/2(i )--1/2}
_I_+ =_r-_fJ k - _,.,0- - 1- K+ 0 +
fJo+k+ (I - v) 0- _u_ k (I + iSla,) (3.20)

(3.21)

To solve (3.20) it is now necessary to decompose the right hand side into a sum of functions
regular in the respective "plus" and "minus" regions. To achieve this, note the simple pole at
SI == ilal in the "plus" region and consider the function

0.22)

that occurs as a factor outside the curly bracket of (3.20). (The same function m(s) occurs also
in the finite crack problem of Section 4). In Appendix 2, m(sl) is written as a sum (m+ + m .),
and a few asymptotic properties are also derived there. Thus we write

(3.23)

with m+, m_ and Co given explicitly, in integral form, in Appendix 2. Using (3.22) and (3.23) in
(3.20), and subtracting out the pole at SI = ita,. we can rearrange (3.20) as

It is shown in Appendix 2 that, in the limit Isl-+oo.

where d and L are given explicitly in integral form. The edge conditions at the crack tip (i.e.
that the stresses and couple stresses are singular like ,"/2, where r is a small distance from the
crack tip), imply that

iT+ == O(s+ -112) and u. == O(s_ -1/2) as Isl-+ 00. (3.26)

These results and the generalised form of Liouville's theorem can be used to show that 1,(sl) is
given by

(3.27)

At this stage the constant K is determined from the condition that iT+ should not have a pole
at s == 0 (i.e. the couple stress should tend to zero at infinity). This condition gives

(3.28)
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and the solution is now formally complete. Equations (3.24), (3.27) and (3.28) are sufficient to
determine the stress and displacement fields. If we restrict attention to the neighbourhood of
the crack tip we need only the behaviour of the transforms at large s. It is found that

(3.29)

and

(3.30)

From these two relations the couple stress and displacement near the crack tip can be
determined. It is not difficult to show (d. Sih and Liehowitz[9]) that the fields near the tip can
be written as

k ( -1/2{ 1 (I - 2v). . 3 }
1'22 - (3 - 2v) I 2r) cos 20 2(3 _ 2v) Sin (I SIO 2(I

k 1/2{' 1 1- 2v. 3 }
1'12 - -4(1 - II) 1(2r( Sin 2(I +8(1- v) SIO (I cos 2(I

1'21 - - i(1- 2v)k l (2rrI/2 sin (J cos ~ (I

(3.31)

The displacement field can be obtained from these formulae and the relations

(3.32)

Thus from (3.29) and (3.30), kl and k2 have the values

~a1/2 { L if}
kl = - (J~2v) 1- d (m+Ulal)- co)- (1- d)-;;(m+Ula l)- co)

k2 = - 21a -112;1'0(1- d)-I(cO - m+(i/o l ». (3.33)

As was indicated earlier, the important quantity from our point of view is the energy release
rate G. This can be calculated by substituting the above expressions into the integral for G
given in Appendix 1. The result is

(3.34)

The expressions m+(ifal), co, d etc. are reduced to real integrals in Appendix 2. For
tabulation purposes it is convenient to define k" k2 and G by the relations

(3.35)
and

(3.36)

One object of the present analysis is to show that G tends to the classical elastic result as I
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(the couple stress parameter) tends to zero. This is equivalent to showing that G tends to unity
as / tends to zero. As can be seen from (3.33), (3.34) and the integrals in Appendix 2. the
expression for G is complicated; apart from investigating it as a function of (I - v) near v equal
to one it has not been verified analytically that Gdoes tend to unity as t ..... O. However. for the
finite length crack problem of Sedion 4 we have an independent argument (Appendix I) to
show that G..... I as / ..... 0, and numerical calculations for several values of v demonstrate the
result.

v

0.0

0.25

o.s

Table I.

1/11 ( f (;
1

0 1.32 1.30 1.0
0.01 1.28 1.30 0.98
0.05 116 129 0.89
010 1.04 1.27 0.81
020 0.87 1.24 0.70

0 1.07 1.24 1.0
0.01 1.04 1.24 0.98
0.05 0.95 1.23 0.91
0.10 0.86 122 0.84
020 0.73 1.20 0.75

0 0.78 1.18 1.0
lUll 0.76 1.18 098
0.05' 0.70 117 0.93
01 0.64 116 0.88
ll.2 055 1.15 0.81

The values of ;(, shown in Table I can be compared with results shown graphically by Muki
and Sternberg [8, Fig. 4]. Our tabulated results are seen to be a little less than tbeirs: for
example, when v = 0.5 and / = 0, their value of ;(, "'" 1.2 is to be compared with our value of
;(, "'" 1.18. Our contention is that our results are probably more accurate, since Muki and
Sternberg need more computation to obtain numerical solutions of integral equations whose
kernels are integrals involving Bessel functions. The solution of our problem. on the other hand.
has been reduced to quadrature: and the striking result that G..... I for / ..... 0, with a variety of
values for v, seems confirmation of the accuracy of the result. We note further that G is a
decreasing function of /, and is always less than unity.

3.2 Micropolar theory
The boundary conditions are the same as those of Section 3.1. Treating the problem as a

half-plane problem we have on x~ = 0:

t~1 = 0,

u~ = 0, 4>1 = 0,

(3.37)

where mj are abridged symbols for m,l and we look for the solution in the half-plane X2 > 0 with
stress and couple stresses tending to zero at infinity.

This problem can be solved in an analogous way to that of Section 3. L and the following
results are obtained:- til. t22 , t 12 and t 21 have the same angular form as 'TIl etc. of eqns 0.31)
except that (1- v) is replaced by (I - v,)b 2

/CI
2 wherever 1- v occurs. The stress intensity

factor k 1 then has a similar form to (3.33) and can be written as

(3.38)

where al = alc,. It should be noted that whereas the expressions in the curly brackets depended
on (I - v) in the expression for the kernel k of the couple-stress problem it is now replaced by
(1- v,)b 2/c,2 as a consequence of eqn (2.12). Having got the stresses the displacements can be
evaluated via (2.15). For ease of reference we quote here results for normal stress and
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displacement near the crack tip

In - {I +2(1- vl)b2/cl~kl(2x1(1/2, X2 = 0, XI> 0]

2(1 - VI) 1/2_
U2-(2p.+X)k l(-2x l ) , X2-0, X,<O.

1111

(3.39)

The couple stress and displacement can also be evaluated via the method of Section 3.1 the
result being

with

I -1/2 1
m23 = 2ak2(2r) cos 29, .I.. - ak2 (2' )1/2 . ! 9

'1'3 - 2'Y r sm 2 (3.40)

(3.41)

a, = alci and c/, b2and 'Yare related in eqns (2.13), and it should be noted again that where the
argument 1- V occurred in Co, d and m+ in the couple stress problem it is now replaced by
(1- vl)b2/c,2.

Using the above expressions the energy release rate G given by eqn (A1.l) of Appendix 1
can be evaluated. The result is

(3.42)

If we now write

(3.43)

and

(44)

then the results given in Table I apply where the argument (1- v) is replaced by (1- v,)b 2Ic/.
Thus we see for example that G-+ I when c,-+O, whatever the value of (I - v,)b2/cI2 [note that
(1 - vl)b21c/ = ~I - VI)(P. +X( IX is finite when 'Y = 0).

In Table 2 we show some results which are more directly applicable to the micropolar case
(they correspond to values of v close to unity in the couple-stress case so are not physically
relevant to the couple-stress case). These values are obtained by a numerical integration which
could perhaps have been done more accurately, but the tabulated values are sufficient for our
purpose. As indicated above, only the combination (1- vl)b2/c,2 is used; typical combinations
that have been used by Eringen, for example, are blc, =0.1, VI =! whence (1- v,)b2/d =0.005;
or blcl = 0.1, VI = 0 giving (1- vl)b2/c,2 = 0.01. Both these cases are shown in Table 2 and the
net effect of this choice of parameters is that their influence on the various stress intensity
factors is small provided the choice of blc! is so small that (1- v,)b2/c,2 is much less than unity.
A similar effect is shown graphically in Eringen[2] for the circular hole.

Table 2.

(1- J',)b2Ic,2 c,/a k2 k, G

0.005 0 0.009 1.002 I
0.1 0.008 1.002 0.997
05 0.005 1.0015 0.995

0.01 0 0.019 1.005 I
0.1 0.016 1.004 0.995
05 0.010 1.003 0.989
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4. THE FINITE CRACK UNDER UNIFORM TENSION

Attention is given here to the problem of a finite traction-free crack in a transverse field of
uniform tension, this being the problem treated by Sternberg and Muki who used an integral
equation approach and found numerical solutions. The emphasis here is on the limiting form of
the solution for small values of the couple stress parameter, making use of the method of
matched asymptotic expansions.

Throughout most of the elastic space the limiting "outer" solution is obtained by simply
setting 1=0 (hence 0'0 =0) in the governing eqns (2.1H2.S) to get the classical solution with no
couple stresses. This outer field is assumed to be valid at distances r~ 1. where r is the distance
from either tip, and the solution will obviously depend on the precise geometry and boundary
conditions at the crack.

It is found that the outer solution fails near the two tips where the effect of the couple
stresses must be properly accounted for. The need for such "inner" solutions is indicated by a
superficial glance at eqns (2.4), (2.5) where the terms in 1 involve high order derivatives: this is a
common characteristic of singular perturbation problems and shows that the terms in tare
potentially very large near the edges, no matter how small the value of I. Thus we should not
neglect these terms within the small "inner" regions, near each tip, where r is of order t. But
within these small regions it is reasonable to expect the field to be relatively insensitive to the
gross features of the geometry. This suggests that the dominant length scale is t (rather than the
crack width 2a) and that the local inner problem, rescaled with respect to t, will be that of a
semi-infinite crack whose solution is found by a Wiener-Hopf analysis.

Precise boundary conditions at infinity for these inner problems are to be determined by
matching with the outer solution. For both inner and outer approximations are to hold in
common regions

t~r~a

near each edge. and the two approximations must be asymptotically equivalent there. Details of
the procedure are now given for the particular problem where a constant normal stress is
prescribed on the crack.

Cartesian coordinates are chosen so that the crack is given by X2 = o. Ixd ~ a, where Tn. 1'~1

and 0'2 all vanish. At infinity we impose the condition

with 1'110 1'12. 1'21 and 0'0 vanishing at great distance from the crack.
Following Muki and Sternberg (1967), the problem is reduced to one of a crack with

prescribed normal stress (- TO), by subtracting off the solution corresponding to undisturbed
uniaxial tension. Thus we write

UI =-~ (PTOhL)X, + uj, U2 =~ (t - v)(1'oIIL)x2 + U2I
1'22 1'0+ Tn, 1'11=1'i .. 1'12=1'b, 1'21=1'21

w == w', 0'0:::: q~.

(4.1)

Thus the problem for 1'h, u~, w', O'~ is subject to the field eqns (2.IH2.5), with the
boundary condition

(4.2)

with Tn vanishing at infinity.
The symmetry of the geometry and applied stress implies that we may confine attention to

the half-space X2 ~ O. Symmetry considerations also lead to the following conditions on the
plane X2 = 0:

1'21 = 0, 0'2' =0, Ixd < a }
T21=0, U2=0, w'=O jXII>a.

(4.3)
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Thus the field eqns (2.1 H2.5) have to be satisfied for X2 O?= 0, subject to the boundary conditions
(4.lH4.3), with Tlj, UI and O'lj vanishing at infinity, and edge conditions that limit the
singularities in stresses and couple stresses to be of order r- 1/2 where r is the distance from
either tip.

4.1 Outer solution
A first order solution, denoted by a superscript (0), is obtained by taking the classical limit

1==0 (O'jj == 0). The solution to this classical problem is well-known and leads to the rotation and
stress fields

",(O)(Xt, 0) == - (1'01,.,,)(1- v)xl(a 2- xI2r l12
, Ixd < a

T~)(X" 0) == To{lxtI(XI2
- a 2r l12 -1}, IXII> a

u/O)(x.. +0) == (ToI,.,,)(1- v)(a 2- XI2)1/2, IXII< a.

(4.4)

(4.5)

(4.6)

Sternberg and Muki [8] point out that, for this class of plane geometries, the classical
solution can readily be extended to give a solution of the full couple stress equations and
boundary conditions, by including the couple stress field O'a(O) == 4,."/2,,,~~). In particular we have

(4.7)

Although this supplemented outer solution satisfies all the governing equations, It IS not
acceptable as a uniformly valid solution of the given problem on account of the severe
singularity of 0'2(0) at the edges. Thus we have to smooth out this singular behaviour by suitable
inner solutions at the edges. Since 0'2(0) is of order t2, it is negligibly small in the outer region
and could be omitted from the leading outer approximation. It is retained for the moment,
however, since it will prove useful in providing information on the expected behavior of our
inner approximation for 0'2, which must match smoothly with the leading term 0'2(0).

In order to match near the edge (a,O) the limiting form of the outer solution is required at
this point. Equations (4.4H4.6) have the limiting forms

",(O)(X.. 0) - - 2-1/2(ToI,.,,)(1- v)a 1/2(a - Xlrl/2 as a - XI -+ +0

T~~(X" 0) - rl/2Toa 1/2(XI - arl/2 as XI - a -+ +0

u/O)(x" 0) - 21/2(1'01,.,,)(1- v)a 1/2(a - Xr)1/2 as a - XI-+ + O.

and the supplementary function 0'2(0) of formula (4.7) is expected to have the behaviour

(4.8)

(4.9)

(4.10)

(4.11)

This latter condition cannot be imposed upon our matched solution, for the function 0'2(0) is of
order 12 and is really to be neglected to leading order in the outer solution. The matched
solution is uniquely determined by assuming only that 0'2 is of order I (or less). The
self-consistency of the procedure is satisfactorily established by verifying finally that 0'2 is of
order t2 in the outer region and is indeed given by (4.11) near the edge. The magnitude of the
supplementary function (4.7), and also the general form of the solution (4.28H4.42), leads us to
anticipate that the next term in the outer solution will be of order I, but higher order terms are not
found here.

4.2 Inner solution
It is obvious from the symmetry of our boundary value problem that Tn and U2 are even

functions of x" whilst", is odd with respect to x.. and we may confine our attention to the tip at
(+ a, 0). In the inner region near this edge the relevant length scale is I, so that new independent
coordinates (X" X 2) are defined by the transformation

(4.12)
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The potentials 4J' and 1//, and the displacement, stress and rotation tensors are rescaled
according to the transformation

4J'(x" X2) = a 1/2/312<1>(X" X 2),

'-fj(X), X2) = (a/l)I/2T;j(X" X 2),

w'(x" X2) = (a//)1/2 W(X), X 2),

l/J'(X), X2) = a 1/2/3/~(XI' X 2) )

a~(xI' X2) = (a/) 1I21 a (X), X2)

U~(XI' X2) = (a/) I12 Ua (X), X 2)

(4.13)

where a~ (a = 1,2) again means a~3'

Under the transformation (4.13) the governing eqns (2.\H2.5) have (x), X2) replaced by (X),

X 2) and / replaced by unity. The other edge, at XI = - 2(a/l), disappears to -00 in the formal
limit I ~ O. Thus in the first inner approximation we have to satisfy the modified eqns (2.\ )-(2.5)
together with the boundary conditions

U2= 0, W = 0, T 21 =0 for XI> 0, _ X 2 =O}
TZI = 0, 1 z =0 for XI < 0, X 2 - O.

(4.14)

Matching with the outer solution, through formulae (4.8H4.1O) and the estimate a =0(/),
requires that

Uz(X" 0) - 211z(To!l.L)(1 - v)( - X I)1I2 as

1z(X), 0) = O(XI I/z) as XI --+ OC.

Xl~-OC

(4.\5)

The expected behaviour (4.\\) for az leads us to anticipate the more detailed behaviour

(4.16)

and this will be confirmed later. S:nisfaction of the given boundary condition (4.1) is seen to
imply that

(4.\7)

to this leading order, on account of the large factor (al/)1/2 that appears in (4.13) for the scaling
of TZ2 • Evidently the first inner solution is an eigensolution of the semi-infinite problem and is
scaled by the algebraic growth requirements (4.15) as X I --+ -oc. A solution by the Wiener-Hopf
technique follows the procedure described in detail in Section 3. Thus Fourier transformations
are defined as before, for example

(4.\8)

(4.\9)

The transforms of '1', Uz, W, 123 and T22 are denoted by ~, 0, W, f and t.
The general form of the transform functions is very similar to that of Section 3, with /

replaced by unity and 1'22, iiz, cd, "2, c/> and ~ replaced by t, f, W, 0, <ii and ~. Thus the eqns
(2.4) and (2.5) have the solutions

with

cI> = (C + DX2) e-ls!X,

'" = B e -I·' IX, + A e /3X,

(4.20)

(4.21l

(4.22)
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B = -4(1- p)isD

IllS

(4.23)

are the forms corresponding to formulae (2.6). The functions A, B, C, D depend on s and are to
be determined from the boundary conditions. The relations corresponding to (2.20) and (2.21)
remain valid, subject to the forementioned notational changes.

From (4.16) we see that T-(s, 0) = 0, whence

(4.24)

where sufficies + and - again denote functions that are analytic in the upper and lower half
s-plane respectively, and T+ means T+(s, O) for notational simplicity.

The matching conditions (4.]5) are satisfied if the transforms have the behaviour

112

W_ - - (i.n) (;)(1- p) e-<I/4)i"'s_-1I2

1/2

T (
]) eO/4)i"s -112

+ - 21T To +

u_ - - G1T) 112(ToIp.)(l_ p) e(1f4)krs _ -3/2,

as s-+O (4.25)

as can be seen by formally inverting each of these transforms to get the required forms (4.15);
the difference between the functions W, T22, U2 and their limiting forms (4.15) have transforms
that are continuous at s = O. In the expressions (4.25) the functions s+ 1/2 and S_1I2 again have
branch cuts from 0 to :+00.

Sin~e 1 23 is of order XI-
I12 as Xr-+oo, from formula (4.15), its transform is continuous at

s = 0, and

as s-+O. (4.26)

The more precise information contained in formula (4.16) will be verified later; the simple
bound (4.26) actually determines the solution.

On eliminating A(s) and C(s) from the equations (4.20), (4.21), using (2.20), (2.21), we are
led to the primary Wiener-Hopf equation

(4.27)

which is similar to (3.23). Note that the minus function inside the curly brackets of formula
(4.27) is closely related to the combination that emerges in the analysis of Sternberg and
Muki[8, eqn 3.2J.

On writing the kernel lsI as a product s+ 112S_112 of "plus" and "minus" functions, formula
(4.27) may be rearranged as

s+ -Jl2{T+ + isI+} = - S_1/2{-.!!:.- U_ +4ip.sW_} is F(s) (4.28)
1- II

where the function F defined jointly by both sides of the equation is analytic except possibly at
s = O. Now for large s, each side of the eqn (4.28) is bounded, on account of the edge conditions
(c,f. the argument following (3.25». The requirements (4.25) and (4.26) at s =0 imply the
existence of a simple pole at the origin. Liouville's theorem then leads to the solution

(4.29)

where Fo is a constant to be determined, and is the value of F(s) at infinity.
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In particular the edge conditions give the asymptotic estimates

is'2.. - Fos, 1/2 and 4ilJ,W - - Fns .-112 as Isl~x (4.30)

in terms of the (unknown) constant Fo.

It still remains to calculate the individual terms L, '2.+ and U_, W_: although the specifi
cations (3.5H3.1O) imply (4.28), the converse does not necessarily hold and we have to ensure
that each of the individual modified identities (3.5H3.1O) is satisfied. Thus on eliminating r.
and U from these equations. using (4.28) and (4.29). we are led again to a secondary
Wiener-Hopf equation

(4.31)

for the functions '2.+ and U_, where the kernel k(s) and the function are given by (3.18) with 5

in place of 51. A connection with Sternberg and Muki's integral equation approach (1967) is
again seen by comparing our kernel (3.18) with the integral eqn (3.8) of that work.

A formally exact solution of eqn (4.31) hinges on the factorisation

(4.32)

and some properties of k+ and L are given in Appendix 2, where it is shown that propor
tionality constants may be chosen so that

as (4.33)

Proceeding formally with our solution of (4.31), the equation can be rearranged to give

with {3o+ and {3n- given by (3.2 I). The next step is to express the last term as a sum

(4.34)

hence

(4.35)

is an analytic function of s, except possibly at s = O.
The sum decomposition (4.34) is described briefly in the appendix. It is noted here that the

sum is found, from (4.33) and (4.29), to have the form

while for small s we find

as Isl~oo

Since we are free to add constants (± Nn) to N+ and N_, we may choose a decomposition such
that

with

at s=O (4.36)

where Cz is some constant that is to be found from the split (4.34) and constraint (4.36).

(4.37)
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Now the function defined by (4.35) is readily seen from (4.25), (4.26) to have no singularity
at s = 0, and is seen from (4.30), (3.18) and (4.37) to have the limit Cz as Isl-+oo. Liouville's
theorem ensures that this analytic function (4.35) is identically equal to Cz, and we have the
solution

(4.38)

and

(4.39)

We are now able to complete the formal solution of the problem by evaluating the
undetermined constant Fo of (4.29). For in order that I+ does not have a pole at s = 0, in
accordance with (4.26), the coefficient (N+ + Cz)offormula (4.38) must vanish at s =O. Hence from
(4.36) we require

(4.40)

and according to (4.37) the parameter Fo must be chosen so that

and as IsI-+oo. (4.41)

It is shown in the Appendix 2 that this always possible if (1- v) is positive, which is
certainly the case since the Poisson ratio v lies between -1 and 1/2. Specifically it is found that

(
1 ) liZ CF. = -'IT T eW.)i",__O_

o 2 0 (1- d)
(4.42)

where Co and d are defined by (A2.20) and (A2.24), and our formal solution is now complete.

4.3 Solution near the tip
The exact solution described above is now investigated at points very close to the tip, when

IX11-+O, and is determined from the behaviour of the transforms for large Is/. Thus from (4.38),
with C2 = 0, and using the asymptotics of Appendix 2 for N+ and k+, we see that

hence

as

as

X-+ +0

(4.43)

(4.44)

Similarly, it is found from the solution (4.39), with Cz= 0, that

as Isl-+oo (4.45)

where Co, d and L are constants defined in the Appendix. It follows that the behaviour of Uz
near X = -0 is given by

as (4.46)

Similar results can be obtained for l¥, as Xt-l'-O, and for Tn as X1-++O. On rescaling these
formulae in terms of the original variables, (4.12) and (4.13), it is seen that the formulae (4.44)
and (4.46) are consistent with the general forms (3.37), with the multiplicative factors kl and kz
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now given by

and
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(4.47)

(4.48)

in place of (3.33). Putting 1=0 in eqn (3.33), then m+(ila.) = 0, and eqns (3.33) agree with (4.47)
and (4.48). The numerical results given in Table 1 with 1=0 apply to the present problem.

4.4 Behaviour of 12 at large Xl
The solution (4.38) for l+. with C2 = O. can also be used to deduce the asymptotic limit

It fol1ows that, at large values of X"

as 5.,.-+0.

(4.49)

(ALI)

and this result confirms the predicted behaviour (4.16) that is necessary in order to match
smoothly with the outer couple stress field (4.7), (4.11) that is described by Sternberg and
Mukir8).

5. CONCLUDING REMARKS

For a crack in a tensile stress field, with either couple-stress or micropolar elastic theories, it
has been shown that the energy release rate tends to the classical elastic result when the couple
stress (or micropolar) parameter tends to zero. Also the energy release rate decreases as the
couple stress parameter increases (Table 1). The result is consistent with the original idea of
Mindlin. that the introduction of couple stresses would reduce the effect of holes as stress
concentrators. Our opinion is that this energy release rate is the important physical quantity in
the crack problem.

For the micropolar theory the same general trend is observed but as Table 2 shows. if hie. is
chosen to be much less than unity. the effect is hardly noticeable.
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A P PEN D1X I. EN ERG Y RELEASE RATES FOR COUPLE STRESS
AND MICROPOLAR ELASTIC MEDIA

I. Couple stress theory
For this theory we take as a starting point the definition

G = fpjln,.dS

where C is some contour enclosing the crack tip (or the right hand tip in the case of the finite crack) and nj is the outward
normal from C. The tensor Pn is defined as

(A1.2)
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where 'JY is the strain energy function; for the plane-strain problems considered here 'JY is given as

1119

(AU)

with a and fJ equal to 1 or 2. The summation convention is used and as before T(a~l means !<Ta~ + T~). It is asserted that
the expression (A 1.1) can be derived from the energy balance equation and is interpreted as the energy release rate for
crack growth. but the derivation is omitted here.

Using (AU) and (AIJ) it can be shown by direct. though tedious. calculation that

(AlA)

In particular. this shows that the integral (A I. I) is path independent by a simple application of the divergence theorem.
In the classical elastic case other invariant integrals besides G have been derived by Gilnther[4] (see also Eshelby[3]

and Knowles and Sternberg (5)).
One of these is the integral M. defined as

(t. j = I or 2). (AU)

In the couple stress case this integral is not path independent. for a direct calculation shows that

(x,Pjt).j = 4p.l2WW' li

where it is recalled that

(AL6)

and (AL7)

The M-integral (AU) can now be used to confirm. for the finite crack problem of Section 4. that as / .... 0 the energy
release rate G tends to the classical value G(O) without couple stresses. To demonstrate this result consider the integral M
evaluated round a closed contour C, (Fig. I) that just surrounds the crack with circular loops of small radius enclosing the
ends.

c,
G 8

Fig. L

There is no contribution from the straight line sections of C,. sinCe the integrand X,P21 vanishes there on account of the
stress-free boundary conditions (T22• T21 and CTz equal to zero). The sVl!!!IIetrY of the problem ensures that the circular paths
contribute equally, and since Xl .... ± a on these arcs when f .... O. we have

M =2afPjl llrJs =2aG (AL8)

using the definition (A1.1).
Now the use of the divergence theorem with the function xl'lt within the region S. bounded by a large circle C and

outside C,. shows from (AL6) and (AL8) that

A similar calculation alplied to the classical solution (with no couple stresses) shows that

where the superscript (0) again refers to the classical problem, and the area integral is absent since fIl~) = 0 in the classical
problem.

Now the asymptotic solution described in Section 4 shows the outer solution of the couple stress problem to be

SS Vol. 13 No. II-H
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asymptotically equal to the classical solution. with an anticipated error of order 1 in the outer region. Since C is in this
outer region. we have Pi' ~ P;,O) + 0(/2). and on subtracting the equations above. we find

2a((J -- G 'O' )~ 4jJ.1' fww.,;dS +0(/) 1.-\19\

as I .... O. where S now denotes the whole space outside the crack.
It remains only to show that the right hand side of (A 1.9) vanishes as I .... O. Now w''; vanishes in the outer region. so we

have to integrate over the regions near to the two edges. which give equal contributions by symmetry. Now in view of the
scalings (4.12). (4.13) we find that

(j -- G"" - 4jJ.1rrWW.JiRdRd8 +0(/)
" 0

= O(/)

(A 1.10)

where (R. 8) are polar coordinates referred to the inner coordinates (X,. X,).
An evaluation of the error term (Al.IO) requires an exact evaluation of the integral f (V W)'dS. and some information about

the next order outer solution. so does not seem to be amenable to analytical treatment. Nevertheless. formula (A 1.10) does
provide some useful information about G. For it verifies that G does indeed tend to GlO

' as I .... O. the error term being of order I.
The convergence of the integral (A1.10). is readily confirmed from the known limiting behaviour of W. given in Section 4. for R
large and small.

2. Micropolar Theory
This case is quite similar to the couple stress theory. the energy release rate G being defined as an integral of the form

(AI.I). with

(AI.II)

in place of (AI.2). Here 'W' is the strain energy function for a linear micropolar solid in plane strain and is given by

where I. k ~ I. 2 and so 811 ~ 2.
Direct calculation again shows that

P'LI ~ 0

and

(AII2)

(A 1131

(A1.141

A consequence of formulae (AI.I3) and (AI.14) is that the integral G. defined as eqn (Al.I). is again path independent.
but the M integral (A 1.5) is not. These integrals can be used to show that G tends to the classical elastic result. as 'Y tends
to zero. in an analogous fashion to that of the couple stress case.

APPENDIX 2 WIENER-HOPF FACTORISATIONS
In order to factorise the kernel k(s). of formulae (3.18) and (4.31). into a product k+(s)k..(s). it is convenient to consider the

function to be the limit. as t .... O. of the expression

(A2.1)

in which (5' + t 2)'/2(S' + 1f1/2 is real and positive when s is real and positive. with branch cuts from i£ to i and from -it to
- i. At large s.

with

k(s;t)-I +2(1- p)(l- £') .. ko (A2.2)

and k has no zeros in its cut plane. On writing

when £ .... 0. (A23)

log (k/ko) = log k, + log (Uko).

the usual Cauchy integral representations for ko are given by

logk.{s) }~±~f'IOg{k(Z)/koldZ
log (Us)/ko) 211'i _. z-s

with im s > 0 for k+ and im s < 0 for k... and the constant ko has been included with k.. in order to ensure that

as

(A24)

(A2.5)
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Isl--+oo. (A2.6)

with kogiven by (A2') when E has the limiting value zero. The integral expressions have indented contours of integration
when im s--+O.

Turning our attention to the integral for log {kjs)/kJ. the integration path may be collapsed around the upper branch
cut to get

(A2.7)

on letting £-+0. Although defined initially in the lower half s·plane. this formula provides a continuation that defines a
function except for a cut from s =0 to s =i.

On setting s =: - it, formula (A2.7) also shows that kj- it)/ko is real and positive when t is real and positive.
Since the integration range is finite in (A2.7), the integrand may be formally expanded for large s to get a series in

inverse powers of s. Thus we find

since k(t) = kO+O(S-2) at large s. we obviously have

; (I -iI 4y3(1-II) }
k..(s)-I- 'l/'S J

o
tan (1_ y~112[l-4y2(1-,,)) dy.

(A2.S)

(A2.9)

The secondary Wiener-Hopf problems of Sections 3 and 4 require sum decompositions for functions involving k_ and
k... Both cases can conveniently be bandled in terms of an auxiliary function m(s) that is now defined as

(A2.l0)

with

(A2.11)

The function m(s) has branch cuts from 0 to ioo and from -iE to -i. and we now seek its sum split of the form

It is readily found that

m(s) = m+(s) + mjs). (A2.12)

while for small s we have

m(s)-I/s as Isl--+oo, (A2.B)

as s--+O, (A2.14)

where the first pair of terms are "minus" functions. Thus we are led to anticipate the results

Since equal and opposite constants can be added to m+ and m_ we can expect to normalise by the choice

(A2.l5)

The Cauchy integral identities

m+ =0 when s =0. (A2.l6)

I f" m(z)dzm,,(s)=±-; --±co.21r1 _.. Z - S
(A2.l7)

with Co to be found, provide a starting point for our investigation of m+ and m_. On collapsing the integration paths round the
lower branch cut. and thereby pickinll up a residue contribution if im s < 0, we find

and

I 1. m(z)dzm_(S)=-2' --+m(s)-co
1r' r z-s

(A2.18)

(A2.l9)

where r is the anti-clockwise loop enclosing the branch cut from - i£ to - i. There is I\() contribution from the large
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semi·eircle at infinity. on account of the decay (A2.13) in m. In order to satisfy (A2.16) we choose Co to be

Co "1~ f. m(z) dz = - ~ I' Im( iy)] '!l'
_ 11'1 r Z _ 11'1 0 .t'

(.-\2.20)

where 1m (- iy)J = m( - iy +0) - m( - iy - 0). is the discontinuity in m across the lower cut. Using formula (A2.10) and noting
that Lf3o_s_ 1/2 is continuous across the lower cut. the discontinuity in m is obviously related to the jump in O/k(s). which is
readily calculated from the definition (A2.1) with l then set equal to zero. Thus we find

. _8 y H2(1_ v)(l- y')"'(1 + l'l' 12k.(-ivJ
[m(-I}')! = .. - .

l-l(9-Svl+Sy"(I- v)(3-2v)
(A2.211

To investigate the behaviour of m, at large s. we may simply expand the integrands in formulae (A2.18). (A2.19) in
inverse powers of s. This gives the results

and

(A2.22l

with Cn given by (A2.20). and

as lsi .... x, (A2.23)

The sum decomposition can now be determined for the function N(s) that occurs in Section 4. By definition

where

(I )''''1 )F, = Tn :1 1T exp (4 '/I'i

and Fo is the (unknown) constant of formula (4.29). Define the functions

which have the required sum (A2.26) and which are chosen so thaI

(A2.24)

(A2.251

IA226)

(A2.27)

(A2.28)

(A2.29)

when .\ = n.

The terms involving Co have been chosen to ensure that N, are bounded at infinity. Specifically.

and (A 2.30)

at large s. with Cn and d given hy (A2.20) and (A2.24). The analysis of Section 4 requires Fo to be chosen so that N
vanishes at infinity. so that

(A2.3I)

One final detail is that of proving d,. I. which is now established by showing that d is real and negative. For the
denominator of (A2.21) is positive in the relevant region 0:5 Y:5 I; according to (A2.7) and (A2.3) the function k -<- it) is
real and positive when 3 - 2v > O. Thus from (A2.24) and (A2.2]) it is seen that d is certainly negative when v < I. and this
is certainlv the case for all possible values (-I :5 v :5!) of Poisson ratio v.


